кабинет информатики №13
Персональный сайт учителя информатики МБОУ СОШ №28 г.о.Коломна Моисеева В.В.
Моделирование зависимостей между величинами
Навигатор

Календарь
«  Февраль 2018  »
ПнВтСрЧтПтСбВс
   1234
567891011
12131415161718
19202122232425
262728

СЕГОДНЯ:

Статистика

Наш опрос
Оцените мой сайт
Всего ответов: 434

Форма входа

Поиск

Приветствую Вас, Гость · RSS 24.02.2018, 20:57

Моделирование зависимостей между величинами

Реализация математической модели на компьютере (компьютерная математическая модель) требует владения приемами представления зависимостей между величинами.
Cо всякой величиной связаны три основных свойства:
- имя,
- значение,
- тип.
Имя величины может быть смысловым и символическим. Пример смыслового имени - «давление газа», символическое имя для этой же величины — Р.
Если значение величины не изменяется, то она называется постоянной величиной или константой. Пример константы — число Пифагора ¶=3,14259... . Величина, значение которой может меняться, называется переменной. Например, в описании процесса падения тела переменными величинами являются высота Н и время падения t.
Тип определяет множество значений, которые может принимать величина. Основные типы величин: числовой, символьный, логический. Размерности определяют единицы, в которых представляются значения величин. Например, t (с) — время падения; Н (м) — высота падения.
Математические модели
Если зависимость между величинами удается представить в математической форме, то это математическая модель.
Математическая модель — это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке математики.
Например, время падения тела t и высота, с которой оно падает H связаны  формулой:
Это пример зависимости, представленной в функциональной форме. Эту зависимость называют корневой (время пропорционально квадратному корню высоты).
В более сложных задачах математические модели представляются в виде уравнений или систем уравнений.

Табличные и графические модели
Это другие, не формульные, способы представления зависимостей между величинами. Например, мы решили проверить закон свободного падения тела экспериментальным путем.
Эксперимент организуем следующим образом: будем бросать стальной шарик с 6-метровой высоты, 9-метровой и т. д. (через 3 метра), замеряя высоту начального положения шарика и время падения. По результатам эксперимента составим таблицу и нарисуем график.Если каждую пару значений Н и t из данной таблицы подставить в приведенную ранее формулу зависимости высоты от времени, то формула превратится в равенство (с точностью до погрешности измерений). Значит, модель работает хорошо. Однако если сбрасывать не стальной шарик, а большой легкий мяч, то равенство не будет достигаться, а если надувной шарик, то значения левой и правой частей формулы будут различаться очень сильно. Как вы думаете, почему?

Итак,  на этом примере мы рассмотрели три способа моделирования зависимости величин: функциональный (формула), табличный и графический. Однако математической моделью процесса падения тела на землю можно назвать только формулу. Формула более универсальна, она позволяет определить время падения тела с любой высоты, а не только для того экспериментального набора значений Н, который отображен на рисунке. Имея формулу, можно легко создать таблицу и построить график, а наоборот — весьма проблематично.
Точно так же можно отобразить зависимость любого явления физической природы, описываемого известными формулами.
Информационные модели, которые описывают развитие систем во времени, имеют специальное название: динамические модели. В физике динамические информационные модели описывают движение тел, в биологии — развитие организмов или популяций животных, в химии — протекание химических реакций и т. д.

Модели статистического прогнозирования
 Статистика — наука о сборе, измерении и анализе массовых количественных данных.
Существуют медицинская статистика, экономическая статистика, социальная статистика и другие. Математический аппарат статистики разрабатывает наука под названием математическая статистика.
Статистические данные всегда являются приближенными, усредненными, они носят оценочный характер, но верно отражают зависимость величин. Для достоверности результатов, полученных путем анализа статистических данных, этих данных должно быть много.
 
Например, наиболее сильное влияние на бронхиально-легочные заболевания оказывает угарный газ — оксид углерода. Поставив цель определить эту зависимость, специалисты по медицинской статистике проводят сбор данных.  Полученные данные можно свести в таблицу, а также представить в виде точечной диаграммы.
А как построить математическую модель данного явления? Очевидно, нужно получить формулу, отражающую зависимость количества хронических больных Р от концентрации угарного газа С. На языке математики это называется функцией зависимости Р от С: Р(С). Вид такой функции неизвестен, ее следует искать методом подбора по экспериментальным данным.


График искомой функции должен проходить близко к точкам диаграммы экспериментальных данных. Строить функцию так, чтобы ее график точно проходил через все данные точки, не имеет смысла. Во-первых, математический вид такой функции может оказаться слишком сложным. Во-вторых, экспериментальные значения являются приближенными.
Отсюда следуют основные требования к искомой функции:
• она должна быть достаточно простой для использования ее в дальнейших вычислениях;
• график этой функции должен проходить вблизи экспериментальных точек так, чтобы отклонения этих точек от графика были минимальны и равномерны.  Полученную функцию в статистике принято называть регрессионной моделью.

Метод наименьших квадратов
Получение регрессионной модели происходит в два этапа:
1)    подбор вида функции;
2)    вычисление параметров функции.
Первая задача не имеет строгого решения.
Чаще всего выбор производится среди следующих функций:
у = ах + b — линейная функция (полином 1-й степени);
у = ах2 + bх + с — квадратичная функция
(полином 2-й степени);
у = аnхn + a(n-1)хn-1 +...+ а2х2 + a1х + a0полином n-й степени;
у = аln(х) + b — логарифмическая функция;
у = ае — экспоненциальная функция;
у = ахb — степенная функция.
После выбора одной из предлагаемых функций нужно подобрать параметры (а, b, с и пр.) так, чтобы функция располагалась как можно ближе к экспериментальным точкам, используя метод вычисления параметров. Такой метод был предложен в XVIII веке немецким математиком К. Гауссом. Он называется методом наименьших квадратов (МНК) и очень широко используется в статистической обработке данных и встроен во многие математические пакеты программ. Важно понимать следующее: методом наименьших квадратов по данному набору экспериментальных точек можно построить любую функцию. А вот будет ли она нас удовлетворять, это уже вопрос критерия соответствия. Для нашего примера рассмотрим три функции, построенные методом наименьших квадратов.

 Данные рисунки получены с помощью табличного процессора Microsoft Excel. График регрессионной модели называется трендом.
Английское слово «trend» можно перевести как «общее направление», или «тенденция».
График линейной функции — это прямая. По этому графику трудно что-либо сказать о характере этого роста. А вот квадратичный и экспоненциальный тренды правдоподобны.
На графиках присутствует величина, полученная в результате построения трендов. Она обозначена как R2. В статистике эта величина называется коэффициентом детерминированности. Именно она определяет, насколько удачной является полученная регрессионная модель. Коэффициент детерминированности всегда заключен в диапазоне от 0 до 1. Чем R2 ближе к 1, тем удачнее регрессионная модель.
Из трех выбранных моделей значение R2 наименьшее у линейной. Значит, она самая неудачная. Значения же R2 у двух других моделей достаточно близки (разница меньше 0,01). Они одинаково удачны.

Прогнозирование по регрессионной модели
Получив регрессионную математическую модель можно прогнозировать процесс путем вычислений, т.е.оценить уровень заболеваемости астмой не только для тех значений, которые были получены путем измерений, но и для других значений.
Если прогноз производится в пределах экспериментальных значений, то это называется восстановлением значения.
Прогнозирование за пределами экспериментальных данных называется экстраполяцией.
Имея регрессионную модель, легко прогнозировать, производя расчеты с помощью электронных таблиц.
В ряде случаев с экстраполяцией надо быть осторожным. Применимость всякой регрессионной модели ограничена, особенно за пределами
экспериментальной области. В нашем примере при экстраполяции не следует далеко уходить от величины 5 мг/м3. Что будет вдали от этой области, мы не знаем. Всякая экстраполяция держится на гипотезе: «предположим, что за пределами экспериментальной области закономерность сохраняется». А если не сохраняется?
Например, квадратичная модель в нашем примере при концентрации, близкой к 0, выдаст 150 человек больных, т. е. больше, чем при 5 мг/м3. Очевидно, это нелепость. В области малых значений С лучше работает экспоненциальная модель. Кстати, это довольно типичная ситуация: разным областям данных могут лучше соответствовать разные модели.

Моделирование корреляционных зависимостей
 Пусть важной характеристикой некоторой сложной системы является фактор А. На него могут оказывать влияние одновременно многие другие факторы: B,C,D и т. д.

Зависимости между величинами, каждая из которых подвергается неконтролируемому полностью разбросу, называются корреляционными зависимостями.

Раздел математической статистики, который исследует такие зависимости, называется корреляционным анализом. Корреляционный анализ изучает усредненный закон поведения каждой из величин в зависимости от значений другой величины, а также меру такой зависимости.
Оценку корреляции величин начинают с высказывания гипотезы о возможном характере зависимости между их значениями. Чаще всего допускают наличие линейной зависимости. В таком случае мерой корреляционной зависимости является величина, которая называется коэффициентом корреляции.
•    коэффициент корреляции (обычно обозначаемый греческой буквой
ρ ) есть число из диапазона от -1 до +1;
•    если
ρ по модулю близко к 1, то имеет место сильная корреляция, если к 0, то слабая;
•    близость
ρ к +1 означает, что возрастанию значений одного набора соответствует возрастание значений другого набора, близость к -1 означает, что возрастанию значений одного набора соответствует убывание значений другого набора;
•    значение
ρ легко найти с помощью Excel, так как в эту программу встроены соответствующие формулы.

В качестве примера сложной системы рассмотрим школу. Пусть хозяйственные расходы школы выражаются количеством рублей, отнесенных к числу учеников в школе (руб./чел.), потраченных за определенный период времени (например, за последние 5 лет). Успеваемость же пусть оценивается средним баллом учеников школы по результатам окончания последнего учебного года.
Итоги сбора данных по 20 школам, введенные в электронную таблицу и
точечная диаграмма представлены на рисунках.
Значения обеих величин: финансовых затрат и успеваемости учеников — имеют значительный разброс и, на первый взгляд, взаимосвязи между ними не видно. Однако она вполне может существовать.

В Excel функция вычисления коэффициента корреляции называется КОРРЕЛ и входит в группу статистических функций. Покажем, как ею воспользоваться. На том же листе Excel, где находится таблица, надо установить курсор на любую свободную ячейку и запустить функцию КОРРЕЛ. Она запросит два диапазона значений. Укажем, соответственно, В2:В21 и С2:С21. После их ввода будет выведен ответ: р = 0,500273843. Эта величина говорит о среднем уровне корреляции.
Теперь рассмотрим какой параметр из 2-х: оснащённость учебниками или компьютерами является коррелирующим в большей степени, т.е. имеет большее влияние на успеваемость
Ниже на рисунке  приведены результаты измерения обоих факторов в 11 разных школах.
Для обеих зависимостей получены коэффициенты линейной корреляции. Как видно из таблицы, корреляция между обеспеченностью учебниками и успеваемостью сильнее, чем корреляция между компьютерным обеспечением и успеваемостью (хотя и тот, и другой коэффициенты корреляции не очень большие). Отсюда можно сделать вывод, что пока еще книга остается более значительным источником знаний, чем компьютер.





ПРОВЕРЬ СВОИ ЗНАНИЯ В ПРИМЕРНОМ ТЕСТЕ
Copyright MyCorp © 2018
Конструктор сайтов - uCoz